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Memory interfacing is an essential topic for digital system design.  In fact the 
among silicon area devoted to memory in a typical digital embedded system 
or a computer system is substantial.  For example, in a mobile phone, the 
number of transistors devoted to memory is many times more than those 
used for computation.  For the second year course, I will only focus on 
interfacing to static memory, known as RAM (Random Access Memory) or 
ROM (Read-Only Memory).  There are other types of memory such as 
dynamic memory (DRAM), Synchronous DRAM (SDRAM) and flash memory 
(Flash RAM) which will not be covered on this course.

In this lecture, we will consider the various type of storage (memory) that 
FPGAs allow us to implement.  The major advantage of FPGAs is that it 
contains lots of small blocks of memory modules, which can either be used 
independently, or combined to form larger memory blocks.  They also provide 
various configurations such as multi-port or registered input/output for data 
and address.

There are various useful references you can look up if you are interested to 
learn more about this.  For the purpose of examination, the contents in this 
lecture and in the VERI experiment are sufficient.
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This slide shows a typical organisation inside a RAM chip.  Memory cells are 
usually organised in the form of a  2-D array of RAM cells.  These are 
accessed first in a row, then in a column.  The address bus is divided into two 
components, the row address (8-bit in the example here) and the column 
address (4-bit in this example).  There is a decode to translate the 8-bit row 
address into one-hot outputs in order to specify which row is being accessed. 
Only ONE ROW will be enable at any one time (hence one-hot).  

The second part of the address (normally the less significant bits) is used as 
select signal into the output mux. This is because when memory is accessed, 
they are normally read or written in a sequence.  Using LSB for column 
decoding means that one stays on the same row of memory as much as 
possible.  Staying in the same row uses significantly lower energy than 
switching between rows in memory accesses. 
In the example here, the 4-bit column address is used to select from a 16-to-1 
mux to provide the correct location in memory to access.  There are 16 
identical blocks, each providing one-bit of the data output.

The output enable signal OE allows the selected data value be driven on the 
data bus.
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Here is a 8K x 8 static RAM chip and its associated digital signals.  The 13-bit 
address bus A12:0, the 8-bit data bus D7:0 are mandatory.  There are three 
more control signals:  Output Enable OE which we have seen before, Chip 
Enable CE which is used to address or select this particular memory chip 
(hence the name), and finally the WRITE ENABLE signal WE, which, when 
set high, indicates that you are writing to the RAM chip, and is normally low 
(i.e. reading).

Note that the data bus has an inverted triangle sign, indicating that this is a 
tri-state bus.  This means that the pin could be an input pin, output pin, or an 
open-circuit pin (i.e. not connected to anything – we call the signal floating).  
The truth table shown here specifies the behaviour of the data bus in one of 
the three possible states.
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For a 8k x 8 RAM, there are 8 data bits, and therefore 8 separate 1-bit arrays.  
Let us assume that each data bit array is organised as a 256 rows  x 32 
column (=8192) of memory cells.  Eight such array are placed next to each 
other to form the 8 data bits required.  This makes the memory chip roughly 
square (which is generally desirable).  
You can think of the row decoder and the column selector driven by the 13-bit 
address as a 8192 way multiplexer, selecting one of 8192 cells organised as 
256 x 32, to be accessed.    
The simplified circuit of each memory cell shown here consists of two 
inverters and two switches is a schematic of the read-write circuit.  When 
reading from the cell, A12:0 select one of 8192 cells to route its signal via the 
right inverter to Dn.  Now Dn is an output pin.  This only happens if CE*OE* 
!WR = 1 (i.e. asserting CE and OE, but not asserting WR). 
When writing to the memory cell, the right switch is open, Dn is an input pin 
driving the left hand inverter and the output switch from that inverter is closed 
because both CE and WR are asserted.
Some memory chips have separate Din and Dout pins, but that’s expensive 
on pins and is not particularly common nowadays.
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Here is a slide showing a generic interfacing between a microprocessor and a 
memory sub-system.  We assume that we use a 16-bit address bus and an 8-
bit data bus.  The control signals go between the two to control the transfer of 
information, and is in general governed by the microprocessor which acts as 
the “master”.
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While we show memory as a block, in a real system, the memory address 
space is divided into many different partitions.  Here we use ‘$’ (instead of 
16’hxxxx) to indicate that the addresses are hexadecimal numbers. The left 
hand diagram shows the memory being partitioned into 32k of RAM, 16k of 
ROM and 4k space for input/output devices.
A design needs to take the upper bits of the address bus and decode 
these bits into enable signals for the three different partitions.  In this case, 
we can see that we only need to decode A15:12 according to the Boolean 
equations shown here.  What about A11:0?  These are the address bits used 
inside the RAM, ROM and input/output modules to select particular locations.
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Selecting which memory sub-system and therefore which memory chip to 
enable is the job of the address decoder circuit.  This circuit takes the upper 
bits of the address bus, and produce enable signals for RAM, ROM and 
INOUTx for a particular I/O device.  
In the previous slide, we showed that the input/output occupies 4k of memory 
space. This is uncommon.  Typically an I/O device may take up, say, 4 
memory locations.  
In this example, INOUTx occupies only the address space $F574 - $F577, 
i.e. 4 locations.  Therefore we need to decode lots of address signals: A15:2.
Can you work out the Boolean equations for the address decoder shown 
here?
The ROM CE signal is another challenge. The ROM is enable if the address 
A15:A12 falls between the range 4’b1011 and 4’b1110.  You should prove for 
yourself that the Boolean equation to decode the address for the ROM is as 
shown here.
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In addition to the address decoder circuit, we need to provide the control 
signals from the microprocessor to the memory chips.  Here we assume there 
exists at least two control signals from the microprocessor: MCLOCK which is 
memory clock signal (which may be different from the system clock signal 
CLOCK), and a WRITE signal, which is high when writing to memory, but low 
otherwise.
The interaction between the microprocessor and memory can be separated 
into two types of transactions: a Read Cycle and a Write Cycle.
During Read Cycle, the microprocessor asserts the address A15:0 and the 
control signals MCLOCK and WRITE.  Shortly after the beginning of the Read 
Cycle, the microprocessor must STOP driving the data bus D7:0, and on the 
second half of the cycle, we assume that memory will then provide the data 
for the microprocessor to read.  Reading is actually performed at the end of 
the Read Cycle, on the falling edge of MCLOCK.  Note that I use red colour to 
indicate the action of the microprocessor on the data bus, and blue colour for 
the action by the memory chip on the data bus.
During a Write Cycle, the microprocessor drives everything.  Writing also 
occurs on the falling edge of MCLOCK in our case.  (Note that other system 
may have a different protocol than the one shown here.)
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This slide shows the control circuit used to interface the 
microprocessor to the 32k x 8 RAM chip.  
Chip Enable (CE) is driven by the output from the address decoder, 
which we have considered in an earlier slide.  Remember the colour 
code I am using: RED driven by the microprocessor, BLUE driven by 
memory.
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Let us now consider the timing constraints imposed by memory during a 
Read Cycle.  First thing that happens would be a valid address A12:0 being 
presented at (1).  As a typical example for memory timing, it is assume that 
data D7:0 holds for at least 2ns before changing, but it is guaranteed to 
provide the correct D7:0 at the new address in 8ns or earlier.  This is address 
to data ACCESS TIME for this RAM.  Note that even if new and old location 
have the same data value, there will be period when D7:0 contain rubbish –
beware.   Also note that memory is providing data to be read by the 
microprocessor, CE, OE and ~WR must all be asserted (i.e. ‘1’).
At (2), memory is deselected or output not enabled, or we are no longer 
reading from memory.  D7:0 again is guaranteed to go high-impedance after 
2ns.
Some time later, if member is selected again at (3), it takes 2ns before 
memory start to drive D7:0, but guaranteed to provide correct data after 4ns.
The most important delay here is that from address or OE to data.  They are 
called address access time and output enable access time.  Usually address 
access timing is longer (here it is 8ns) than OE access time (4ns) because 
output enable simply enable the output multiplex stage, which is close to the 
data output pin.  Address access involves decoding the address values to 
produce the one-hot row select signal (known as the WORD line), and then 
the row of memory cells needs to present its data to the column multiplexer.  
Selecting which row to access is generally a much slower process than the 
column multiplexer.
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Here is the timing for the Write Cycle.  Remember that Write Cycle timing is 
particularly important – any timing error here could result in corrupting the 
contents store in RAM.

(1)The write pulse is signified by CE and WR both being asserted (i.e. 
TRUE).  There is usually a minimum period specified – here 10ns.  Also as 
soon as the WR is asserted, WR = 1 and D7:0 must go high-impedance 
within 2ns (i.e. memory no longer driving the data bus).
(2)The address A12:0 must be stable at least 2ns before the write pulse, and 
it must hold for another 2ns after the write pulse.
(3)The data is written to memory on the falling edge of the write pulse.  The 
setup and hold time is 4ns and 1ns respectively.
(4)This is when the Write Cycle finishes, and we go back to Read Cycle.  
Expect D7:0 stays high impedance for at least 2ns.
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The simplest form of storage is a register file.  All microprocessors have 
register files, which are known as “registers” in the architectural context.  

Register files are fast, large and flexible.  They are generally used to store 
temporary data for easy access by the ALU or floating point unit of a 
microprocessor, or for computational engine of a application specify digital 
system.

On the FPGA, register files are often implemented with the D-FF’s in the 
Adaptive Logic Modules (ALMs).  Each ALM has two D-FFs.  Therefore a 32-
bit register will take up 16 ALMs.  Alternatively one could also use the static 
memory blocks for this purpose.
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The circuit of a register file is simple – it consists of arrays of D-FFs, 
which can be disable (and output becomes high impedance).  The 
register select signals sel_reg0, sel_reg1 etc. enable the correct 
register to put the data on the data line (called bit line here).   The 
read/write control signal WE is used to determine if you are reading or 
writing to the register.



15

The register identification (regid) determines which register you are 
trying to access.  This is achieved through a standard decoder, which 
generate a one-hot code word to select the appropriate register to 
access.



16

Now let us turn to the Cyclone V FPGA.  The FPGA has many different type 
of resources in additional to Adaptive Logic Modules (ALMs).  These are: 
memory blocks, Digital Signal Processing (DSP) units, phase-locked loops 
and input/output pads.  In addition, there is a dual-core ARM processor and 
its associated bus interface circuit (shown in light green).

Here we focus on memory.  In the C5-SE-A5 series, which is the one we use 
in the DE1 board, there are near 400 separate memory blocks, each with 10k 
bits of storage.  Together with the ALMs, there is 4.45 Mbits of flexible 
memory storage available to the designer.
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Each of these blocks (known as M10K) can be configured with different depth 
and data width as shown in the able above.

Even more importantly, the can also be configured to act as conventional 
single-port memory, or simple dual-port with one port for read and one port 
for write.  

Further, they can be made to be true dual-port, both ports being read/write 
ports, or as a shift register, a ROM or a first-in-first-out buffer (FIFO).
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As you have seen in the VERI experiment, if the memory block is a ROM (or 
even as a RAM), its content can be configured via a memory initialization file 
.mif.  The format of the file is shown here.    Typing the contents of a 1024 
ROM module by hand is silly and impractical.  I wrote two versions of a 
simple programme to generate this .mif file, one in Matlab and one in Python. 
Below is the code for the Matlab version.
The ROM is produced using the IP Catalog tool.  Here is a 1024 x 10 bit 
ROM generated with all input and output registered and synchronised with 
the clock signal.
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In the experiment, you have already implemented a sine wave generator 
using the ROM to store one cycle of a sine wave.  The counter is used to 
advance the phase of the sine wave, which is specified as the address X of 
the ROM.  The content of the ROM, y= F(x) is the content of the ROM and is 
the generated wave form.  Instead  of storing a sine wave, you can easily 
store any other signal (such as a voice or music segment).
In order implement a variable frequency sinewave, you could modify the 
address counter so that it is goes up not only by 1 count for each clock cycle, 
but by N. For example if N is 2, then the address counter will skip every other 
sample in the ROM and therefore the generated sinewave will be at twice the 
signal frequency.
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Here is a generated single-port memory with ALL possible signals 
included.  The meaning of all the signals are self explanatory.
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Here is an example of using the MegaWizard manager tool in Quartus.  
We are producing a 1-port RAM with 1024 x 8, all signals are clocked.  
The generator produces a sample header file (a template) which 
defines the interface signal to the generated block.  Remember you 
must tick the Verilog HDL radio button.
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You can also configure the M9K memory block as  a shift register.  
Here is an 8-bit 16 stage SR.  In addition, it provides “tap” outputs for 
every stage, i.e. 16 x 8 = 128 output signals.  This is very useful to 
implement FIR filter or perform time domain convolution.



In the Part IV of the VERI experiment, you will be using a FIFO to 
implement an echo synthesizer.  The action of a FIFO is shown in the 
diagram above. 
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Here is a generic block diagram of a FIFO with its typical interface 
signals.  FIFO is a form of queue.  Internally there typically two 
counters, one keeping track of the read address (or read pointer) and 
another counter keeping track of the write address (write pointer).  
There needs to be status signals such as FULL, which is asserted if 
the FIFO is completely filled and writing any more words to it will 
destroy stored data, or EMPTY, which signifies that there are no data 
left to read.
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FIFO can be generated using the IP Catalog manager tool.  Here is an 
example of a 32 word x 8 bit FIFO.


